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THE PROPAGATION OF A COMPLEX F~CTURE AREA, 
THE EXACT THREE-DIMENSIONAL SOLUTION* 

A.S. BYKOVTSEV and D.B. WAMAROVSKII 

An analytic solution is constructed for the three-dimensional problem of 
the propagation of a rectangular fracture area on which a complex fracture 
process is given (cleavage with shear). A kinematic approach is used to 
describe the fracture process occurring at the discontinuity where the 
magnitude and direction of the displacement on the discontinuity is given 
on the whole fracture area as a boundary condition. Laplace and Fourier 
transforms and the Cagniard-Hoop method are used to determine the originals. 
The solution constructed extends the solution obtained earlier /l/ to the 
three-dimensional case. 

At the present time research efforts in the area of theoretical modelling of fracture 
processes occurring in focal zones of tectonic earthquakes are directed towards the production 
of those models (describing the ripping open processes at a focus) which would allow a 
description of the singularit.ies of high-frequency radiation in the best manner. Models 
should be noted in which the ripping open of a fault occurs in jumps (the barrier method) /2- 
4/, as well as the more general model based on a discrete jump-like ripping open of the fault 
along complex curvilinear trajectories fl, 5-7/. 

The use of the extensively used Haskell computational model /8/ in seismic practice to 
analyse high-frequency radiation raises serious difficulties since the number of point sources 
taking part in the integration process increases catastrophicallyasthe size of the fracture 
area grows. To eliminate these disadvantages, exact and compact analytic solutions must be 
constructed for, at least, the simplest models. A detailed survey of these papers is given 
in /2/, consequently, we note here only some fundamental results. Thus exact analytic 
solutions for a number of plane two-dimensional problems were constructed in /l, 6, 7, 9, lo/ 
(i.e., the width of the fault was assumed to be infinitely large), and a qualitative analysis 
is given of the singularities of seismic radiation generated both by single faults and complex 
systems of faults propagating at variable velocity along arbitrary curvilinear trajectories. 
Exact solutions have been constructed /11-14/ for circular and elliptical cracks, solutions 
were obtained /4/ of problems on the jumplike propagation of circular and annular dislocation 
faults. An analytic solution was obtained /15/ for a rectangular fault with pure shear and 
a constant function of the jump of the displacement on the fault. 

The construct the general solution that takes account of the propagation of an arbitrary 
system of complex curvilinear discontinuities, it is necessary to have the solution of the 
problem of the propagating fracture area for which both a cleavage and shear component of the 
jump function for the displacement on the fault are present, as the fundamental solution. 
Consequently, the main purpose of this paper is the construction of an exact analytic solution 
extending the fundamental solution obtained in fl/ to the three-dimensional case. 

1. Formulation of the problem. At a time t= 0 in a homogeneous isotropic elastic 
medium let a semi-infinite dislocation discontinuity (fault) with constant jump of the dis- 
placement B(B,, B,, Bz) originate along the positive z axis direction. One of the fault fronts 
starts to move at a constant velocity u0 along the positive direction of the x axis, and the 
other is at rest and coincides with the position direction of the @z axis. The Oxgz co- 
ordinate system used to solve the problem of the fracture of a quadrant of space and the 
orientation ofthe fault is shown in Fig.1. 

The equations of motion of the medium can be represented in the form of the following 
wave equations: 

@P and c, are the longitudinal and transverse wave velocities, $>C,, and A is the three- 
dimensional Laplace operator). The potentials UJ and ye are connected with the displacement 
vector n by the relationships 
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Fig.1 

u=grad@-trotY, divY:-0 

The boundary and initial conditions are 

(1.2) 

Y = 0, (1.3) 
[ul = BH (x) H (z) H (t - s/v,) 

t = 0, @ = imiat = 0, (1.4) 

‘k” = aFiat = 0 

Here H is the Heaviside unit function and the square brackets 
denote the jump in the quantity enclosed in the brackets. 

The displacements equal zero at infinity, i.e., the potentials 
@ and y and their space derivatives tend to zero as R2 z 52 + 
y2 $ z~--+co, 

The stress tensor components (lit are associated with the 
displacement vector components by the relationships (p is the 
density of the medium) 

A generalized dislocation fault with the displacement jump [ul = B fB,,&, B,) can be 
represented in the form of the sum of a separation (normal) and shear fault. Then the 
boundary condition (1.3) can be replaced by the following boundary conditions: 

for a pure separation fault 

y = 0, uy = ‘i,B,,H (I) H (z) H (t - x/u,), urv = 0, CJ*~ = 0 

for a pure shear fault 

(1.5) 

y = 0, U, = V2B, H (x) H (z) H (t - xiv,), u, = ‘I, B,H (x)x (1.6) 
H (z) H (t - x/z+,), uyy = 0 

We will construct the solution of the problem with the conditions (1.5). The solution of 

the probl.em with the condition (1.6) was obtained in /15/. 

2. Construction of the formal solution. Solutions of the wave Eqs.tl.1) satisfying 

conditions (1.4), (1.5) and the condition at infinity can be obtained by using a Laplace 
transform in the variable t and a double Fourier transform in the variables x and z: 

(2.1) 

-m 

Later the subscript LF will be used to denote the result of both transformations in (2.1). 
Applying (2.1) to the wave Eqs.(l.l), and taking account of the condition at infinity, 

we obtain 

Q)LF = c exp (- %d YiLF = cf exp (- n&) (2.2) 
n p,s = (62 f 52 + k2Cp,,-")" 

Applying the transformations (2.1) to the second equation and taking account of (2.21, 
we find 

Y . @LF = z Kc% -t wzt s-’ exP f- WJ (2.3) 

Applying the transformation (2.1) to the first equation in (1.2) and taking (2.2) and 
(2.3) into account, we obtain 

UELF = i&? exp (-v$) f (h-’ - n8) cx eXp (-m) $_ 

ESn,-lC, exp (-.W 

%LF = -n& exp (-!&) - if& exp (--yn~) + iW,exp (-q/n,) 

Then the boundary conditions (1.5) can be represented in the form 

-2iSn,C -I- 255c, -(252 + k,z)C, = 0 (2.4). 
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-2i&,C + (2c2 + k,*) C, - 2E&‘, = 0 

-n,C - i&5’, + @C, = B, Knik~ (i5 + kv,-‘)I-’ (k, = kcd-‘) 

In the subsequent calculations it is sufficiently to limit oneself to a consideration 
of real values of k, as was shown in /16/ that according to the Lerch lemma even in this case 
the solution is determined uniquely. 

Let us make the change of variables 

5 = -&cP+PX, 5 = -ikcpe’P, 

and we solve system (2.4) by the Cramer method. We obtain 

C = - D [f!02 - 2P*] m_d, C,= - 2DP,, C,- -2DP,, 

P2 = P,S -!- P,2 
(2.5) 

D = B, [hck3c,*Pl (P, + y) f&2]-‘, y = cp$, PO = c,c,” 

I&F = Z&F _t Z&F = DFiP exp (- ykci’m,) + 

DF? exp (- ykcp’m,) 

FjP = -Pj (@$ - 2P2) rn,‘, F,” = 2Pjm,, j = I, z 

FuP = &,” - 2P2, FIJ = 2P2, mp = (1 -PfI!z, m, = (fiO" --JJ~)VB 

The branch that has a positive real part is taken for the square roots mp,*. 

(2.6) 

(2.7) 

3. Finding 
solutions (2.61, 

the originals. Applying the inverse Fourier transformation to the 
we obtain 

z&* (2, y, z, k) = 

- & I_ dP, ii dP, F~~‘;~‘+~~ exp {kc,' [pr - ym,, #I) 
-_)oD 

PC = P,x + P,z = c,k-‘i (5s + cz), r2 = za + z” 

(3.1) 

We use the Cagniard-Hoop method /16, 17/ to integrate (3.1) and obtain the solution in 
the time domain. 

We apply the following modified de Hoop transformation 

P, = g cos ‘p - iw sin q, P, = g sin tp + ilc COS rp (3.2) 

mp = (10~3 - g")'k, m, = (xs2 - g2)"c, wpz= w2 + 1, (3.3) 
U’,” = tc= + PO” 

We note that to use this method successfully the 
parameter k must only be in the exponent of the component. 
The parameter k is present in (3.1) in the denominator 
of the factor in front of the integral. .To isolate it, it 
is sufficient to consider later the velocities 

Fig.2 

UT rather than the displacements u$?. In conformity 
with the properties of the Laplace transform 

ui~,' (R, k) = kujl: (I?, k) - ui (I?, 0) 

where ui(R, 0)= 0 agrees with the initial conditions. 
We then obtain from (3.1) 

Bi m 
ulf”(R, k)== -+ 1 Jdw 

-m 

J= 
im Ff.8(g, lo) 

s p tp + ,,) exp [kc;’ (gr - ymp, Jl CES 
-tcm L x 

(3.4) 

Here Ris a radius-vector with the direction cosines 

y, = sin 0 co9 cp, vy = eos 8, -9, = sin cp cost), %,X2 + Yy2 t_ vz2 = 1 

(the angles cpje are shown in Fig.1). 
We note that the singularities in the integrands in (3.4) are the bifurcation point G,,, 

and simple poles g, and g, (Fig.2) determined from the conditions 
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GI,,, = -+(w” + &,s?)‘.*, J3, = 1, f3* = PO (Xl} 

g, = --iw ctg 9, g, = -y/cos IJ? + iw tg9, (X6) 

To evaluatetheinner integral in (3.41, we go from integration over the imaginary axis 
to integration over the closed contour and we use the residue theorem. Then 

J=_.-. 1 ‘r’ ’ (g* w, 
rp s Pz(P,$-Y) 

exp [kc;’ (gr - ym,, J] dg i- (3.7) 

where r,,, are the contours shown in Fig.2. 
Substituting (3.7) into (3.4), we obtain 

where J@, Jp, J2Pss are integrals taken from the 
hand side of (3.7), respectively. 

into 
To evaluate the integrals JlP*’ we deform the contour of integration in the w plane 
a Cagniard contour, which is defined parametrically by the equation (t is a real parameter) 

t = --cP-'(gIr - ym,.,) (3.9) 
Substituting the first relationship of (3.6) and (3.3) into (3.91, we obtain 

&- [Jp' * Jr J:# “1 (3.8) 

first, second, and third terms on the right- 

Taking into account that 

T sin 'p = Rvz, y = RvU, v, = sin cpjfV,2+ V,’ 

and solving (3.10) for w,we obtain 

(3.11) 

We convert (3.11) by going over to the p,,$ coordinate system fFig.1). Since pra = 
R%,a, Rv, = p1 cost& RvB = p1 sin%, (3.11) can be converted to the form 

w = -iq sin rp cosIp & Tp ‘sin $ sin tp (3.12) 

zy = tc&l, TIPS s = h” - Bp,aD)“‘, %> ffp,n 

To be specific, we select the plus sign before the second component in (3.121, i.e., we 
consider the upper sheet of the Riemann surface. 

Having determined dw from (3.12), we obtain that 

(3.13) 

Taking account of the first relations in (3.6) and (3.12), we obtain from (3.2) and (3.3) 

P, = --cl cos 9 - iTg.8 sin 9, P, = 0 (3.14) 

mpe . = ~1 sing - iTrp*%os g 

Then substituting (3.14) into (2.7)‘ it can be seen that the integrands in (3.13) have 
an even real part and an odd imaginary part. Therefore, (3.13) can be represented in the 
form 

(3.15) 

This equation is a direct Laplace transform of the integrand intheexponential. According 
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to rules of the operational calculus,wefind from (3.15) 

(3.16) 

The functions H(z) and H(z, - j$,,*) characterise the domain of existence of the integral 
JrPcS. The functions H(z, - &,.s) govern the moments of P-wave and S-wave arrival at the point 
of observation while the functions H(Z) indicate that the integrals Jps differ from zero 
only for z>O since the pole g, will be withintheclosed contour only for sincp>O (or 
z>O). For z< 0 the pole g, will lie outside the contour and it should be bypassed to the 
left. 

To evaluate the integrals J,~,s we define the Caqniard contour dn the form 

t = - cpl (g2r - ym,,,) (3.17) 

Substituting the second relationship of (3.6) into (3.17), and performing an analogous 
series of calculations, we obtain 

wz - isincpcosm J.$$ - 
[ 

~(Z~-YeOstltgcp)]~Tg'"sinrlcosrp (3.18) 

where 

h3, ? are cylindrical coordinates around the x axis (Fig.1)). 
To determine the domain of existence of the integrals J$+" it is necessary to examine 

the conditions under which the pole gz will be within the closed contour. Substituting (3.3) 
into (3.17) and solving the quadratic equation obtained for g we obtain 

g= cpP [- tr & iy I/C - R%;"wi, *] 

This equation determines the branch of the hyperbola in the complex q plane; the asymptotes 
of the hyperbola determine the angle CL = tarctgyir. The real part of this expression is always 
negative. Then the pole g, = --y/~osrp -f- iw tgcp will be within the closed contour under the 
following conditions: 

Reg,<O, or s>O 

Reg,> Re g, or t > Rlv,v, = t, 

Imga> Im g, or w tg 'p > ye,R-* fta - R2Cp-4~p,sa 

It follows from the last two relationships that 

(R”y” - .*ja 
w2>-- P. 8 

) y* 

+(uPaZI) = WV 

Therefore, we have obtained that depending on the value of the rate of ripping open the 
fault, the following domains of definition of the solution are possible: for x>O and 
y&,.-l< xR_l the pole g, will be within the contour for we [O, oo[; for x>O and y&8-1> 
xR-’ the pole g, will be within the contour for ZUE[W,, 001; for s<O the pole will be 
outside the contour. 

For the fault ripped open at the rate VO>Q, the integrals Jp will exist within the 
domain fFiq.3a) whose boundaries are determined from the relationships 

t = tp* = v,‘(fyr - Ip, + x) and t = to for P-waves 

t=t,*= ~;~(I/f3~*p- Ip2 + x) and t=to for S-waves 

For E~,v,>c, the solution will exist within the domain (Fig.3b) whose boundaries are 
determined from the relationships 

t = to for P-waves; t = t,* and t = to for S- waves 

For cp > 5 > v. the integrals JpPsa will differ from zero within the domain t= to (Fig. 
3c). 

We will henceforth limit ourselves to considering the case when cp>c,>vo. 
The following the same procedures as when finding Jp, we obtain 

To determine the functions PIP.r in (3.191 we have the following expressions obtained 
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by taking account of (3.18), (3.2), (3.3) and the second relationship in (3.6): 

Fig.3 

The function H(T, -TO), TO = '#Z//X 1, which determines the condition for finding the pole 
g, within the Cagniard contour is present in (3.19). 

The Cagniard contour for evaluating frP_' is given by the equation 

t = --c~+ (gr - ym,,,), r = -g sin 8 _t mp,? cos @ (3.20) 

Substituting (3.3) into (3.20) and solving for g, we obtain 

g (r, w) = (ul,,,~" - r2)‘~~ cos 0 - a sin 8 (3.2%) 

saving determined g from (3.3) and substituting the result into (3.20), and then solving 
the equation for mpsE, we have 

mp,# L= (zu~,~* - ?)'/s sin 8 i_ 7 cos B (8.22) 

The configuration of the Cagniard contour is a function of the real parameter r = tc,&' 
and the real variable w. For 1: < (u" + ~P,sp)'/* the contour agrees with the axis Reg, and 
this section makes no contribution to the integral (it is not considered in Fig.2). For 
r > (w2 + &+?)'il the square root becomes imaginary andthe Cagniardcontour splitsintotwoparts 
f+ and I'- (Fig.21 depending on the sign of the square root 

JrP.8 = z,+= -+ Iy+ + I,- + Ir-m (3.23) 

The integrals rim, fern are evaluated along the contour r"" P,$ and tend to zero as ]g]-> 

according to the Jordan lemma. 
zken along r+ or Y. 

The plus and minus superscripts correspond to the integrals 

We find 

dg/dr--mm,,,(w~,,--~)-‘~~, ]u?I<(~~-~~,~)‘/I=T~,~ 

from (3.21) and (3.22) and because (ru2+ fiaP,s)t'l<a in (3.23). 
Since w is a real parameter, then z> &,d. Going over from z to t (TR = tcp), we obtain 

TP, s 

If*==-- 1 dw f [M~‘*]*exp(-kt)dt 
-Tp, B R$Pp, S 

MiP*’ = FIp~*mp,,lP, (P= + yf (w’ - Tp,saf’f* 

or 

=P, 8 

IF* = - c,K’ s dwjP(MP.‘]‘H(z--p,,)sx~(- kt) dt (3.24) 
-Tp,a 0 

Taking into account that the inner integral in (3.24) is a direct Laplace transform of 
the integrand in the exponential, it can be written in the domain of originals 

TP.8 
Ir*_L_* j dw[MY'"]*H(r - f&r) (3.25) 

-*f)*a 

Then if the w plane is slit as shown in Fig-l, then by taking the positive value of 
the root (we - TP,sp)'l* and taking account of (3.23) and (3.25) we can write on the upper edges 
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of the slits 

Imw 
f 

Fig.4 

where rPla is the closed contour around the slits. Using the 
theorem of residues to evaluate (3.26), we have 

frP." = 2nic,R-* (Res,+Res, -I- Res,) 

where Res,, Res,, Res, are the residues at the poles P, = 0, p, = 
--y and infinity, respectively. 

To evaluate Res, we obtain from the second relationship in 
(3.2) and (3.21) 

P, = (WI2 - r2 + &.SZ)r/* co5 0 sin 'p - r sin 0 sin r $- iwr co5 cp = 0 (3.27) 

Taking into account that vx = sin 0 cos 9, vy = cos 0, Y, = sin 8 
sincp, we have from (3.27) 

w lv,a = {-iz co9 cp + vy sin cp I+ - u,a~p,,a]‘~~}az-a {3.28) 

For a single-valued selection of the sign in (3.28) we consider the root to take a 
positive value on the upper sheet of the Riemann surface. We then obtain 

for the residue at the pole P, = 0,where rr = ~a;' = tcd),'l;pl, II, are the cylindrical coordinates 
shown in Fig.1 while the functions PIP,’ are determined by using relations (3.14). I?ote that 
the poles wf*" lie in the fourth quadrant, and their trajectory is shown in Fig.4. 

To evaluate the residue Res, at the pole P,= -Y, we find from (3.2) and (3.21): 

wf”” = {- i (y - TV,) j, vz cos ‘p [(y - mQ2 + Ti, S]*‘=) a;“, 
C&,2=1---Y,” 

For a single-valued determination of the function we select w* for rz>rO and w^ for 
r2 < zp. We then obtain fortheresidue at the pole P, = -_Y 

Re&, s = F? “mp, II [P,T? “a,~-~ [* H (TV - (&,, S - yvz) a;‘) 

The functions FI*** are determined by using (2.7) and the following relations: 

P,* = --y, Pf = -'cz cosn f iT,P*bsinn 

&, = rS sin q f iT,P.‘eosq 

It can be shown that the sum of the residue ResrP,$ and J%’ determined from (3.22); 
apart from the sign, equals the residue Res-,,,. 

To evaluate the residue at infinity, we expand the integrand in (3.26) in a Laurent 
series. Carrying out this procedure for each of the functions FjP.8, we obtain 

12: = &2A, @vzAI - ‘yA, + 2m,) Hd’.’ (3.29) 

1;i.f = (+2A, hv, Al - (y -i- 7v,) A, + 7v,l f 
2As’ I--sv,A, - (y - 7vJ A, + zv& HsP,’ 

1% = &-2A, r-(y - 7~~) A, + 27vJ Hap*” 

H,P.~ = H (r - pp,a), A, = (vyv, - ivx) CC;~, A, = @xv,, -I- 

&) azwa, A, = -(v~Y, + iv,) atee 

Therefore, by substiuting (3.291, (3.19) and 13.15) into (3.8), omitting the tedious 
calculations and taking into account that the sum of the imaginary parts will be zero, we 
obtain 

where I?” 1oJ are determined from relationships (3.29). 

Relationships (3.30) are an exact analytic solution of the problem of the fracture of a 
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half-space quadrant with a permanently assigned pure separation component of the displacement 
vector on the fault. The solution of problem (1.6) can be constructed analogously. Then by 
integrating relationship (3.30) with respect to time, the general solution of problem (1.3) 
can be represented in the form I', .-= CtP + U," (i -= I, y, z), where 

ZJl"- A (B,[2y2arcl” - F,J + /;,;(I -/. [&2)hil~, ;- fci.3~) 

‘/r Paz~;\~;i I.r!l” -I_ /,I} HP + A (I& [ :. 2y* arc17' i- IT,] -i_ 

fj,[r;" + 'ir fl,sy;r;l LnP) -I- BzI1sP)I~lP 

Uir"=== A @,[- p32 arc~S -;- F&] -+ ,ju[- pa2 IIlls - 
yyc IJ)I' - ,f& Hxs -f A (fl,[&z arc:'- r,] + 
Ny [- r.s- yysLnaSf- &r:IB)Ni3S 

Here 

(3.32) 

4. Analysis of the results and construction of the complete solution. FOT 

the first onsets of the P- and S-waves at the point of observation, we obtain the following 
near-front asymptotic forms from the exact solutions (3.31) and (3.32): 

Up = A IS, sin 29 .f B, (j%P - 2 co9 pp)] ":"a,-,' x (4.11 

Hfz)H(n- 1) -I- A [2&v&-t_ Bt,(2v,a c 60% - 2) + 
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The factors in front of the unit functions H17'98 in the exact solution (3.31) and the 
first components in the asymptotic solutions (4.1) agree withtheexact solutions of the plane 
problem /l/ and the asymptotic solutions /7/, respectively. This part of the general solution 
is cylindrical waves that act in the domain z>O and fall off inversely as the square roots 
of the distance. The remaining part of the solution is spherical waves produced by the 
angular points. The spherical wavesexistin all space, but they damp out considerably more 
rapidly with distance than the cylindrical waves, namely, in inverse proportion to the distance. 
Therefore, the greatest part of the information about the source will be contained, for large 
R, in the cylindrical waves while the solutions of plane problems /I, 6, 7f can be used 
effectively to analyse them. 

Radiation directivity patterns of cylindrical P-waves (upper series) and S-waves (lower 
series) are presented in Fig.5 for a rate vg = 0,6C, of ripping open the fault and different 
values oftheangle that governs the magnitude of the separation and shear components of the 
displacement vector at the fault $, = arctg(B,IB,), & = 0, 20, 40, 90' (patterns a-d). For a pure 
shear fault q0 = 0 (Fig.5a), the presence of two mutually perpendicular nodal planes is 
characteristic (for both the P- and the S-waves) in which there are no slips and where the 
sign of the displacement vector changes as it goes through them. 

0.01 

a 

For a pure cleavage fault 

b C d 

Pig.5 

$0 = 90" (Fig.Sd), the seismic P-wave radiation is positive 
in all directions, i.e., compressive. As is shown in Figs.5b and c, for a complex fault the 
radiation pattern will depend on the ratio between the normal and tangential components of 
the displacement vector at the fault. As the separation component of the displacement vector 
grows at the fault, the angle between the two nodal planes will decrease in the P-waves, will 
equal zero for q0 = 30", and for $,,>30" the first onset of P-waves in all directions will 
have identical sign, i.e., the quadrant-by-quadrant distribution of signs of the first onset 
of longitudinal waves will be absent. Rotation of the nodal planes by 45O will occur for the 
S-waves as the angle -$ increases from o to 900. For a pure cleavage fault, the radiation 
pattern of seismic radiation will. be symmetrical for S-waves and asymmetrical in the presence 
of a shear component. These radiation pattern singularities of seismic radiation can underlie 
the processing of seismological observations for the isolation of complex foci of tectonic 
earthquakes. 

Therefore, the correct determination of the magnitudes of the cleavage and shear components 
of the displacement vector for a complex fault enables the accuracy of determining the 
mechanisms and other dynamical parameters of foci of large-scale tectonic earthquakes to be 
improved. 

It should be noted that solutions (3.31) and (3.32) were obtained under the condition 
that the vector B= const. On the basis of the linearity of the fundamental equations, the 
solution for an arbitrary dependence of the vector B on the time B=B(t) can be obtained 
by using the Duhamel integral 

s 
B(r-r) C'p*s(z,y,z,~) dr (4.2) 

0 

where W* is the solution defined by relations (3.43) and (3.44). 
Solutions (3.31) and (3.32) are exact analytic solutions oftheproblem of complex 

fracture (shear with separation) of a quadrant of space under the condition that the fracture 
front propagates at a constant velocity. On the basis of these solutions and because of the 
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linearity of the fundamental equations, the solution for a rectangular fracture area, one of 
whose edges propagates at a constant velocity L'", is constructed as follows. 

Let UJ'~"(.C, y,z, r'O, 1) be the complete displacement vector that is constructed on the basis 
of solutions (3.31) and (3.32). Then the solution for a rectangular fracture area whose 
width is W,, and whose length is L- @, will have the form 

";'"= UP,S(J, 1/, z-j- */niI~,, uo,t) - V.“(s, y, z - ‘jelV,, co, t) (4.3) 

The solution of the problem taking account of the arrest of the moving edge of the fault 
at the time t= to is constructed in the same way at the solution of the plane problems in 
/l, 6, 7/ and has the form 

"f?" =Up's(x, y, z, &V,, 00, t) - U~~S(Z-z&, v, z, FI.0, Do, t-q (4.4) 

Using the superposition principle and the fundamental solution (4.4), we can construct 
a general solution of the problem of an arbitrary system of complex curvilinear faults 
propagating at variable velocities and transfer to a detailed quantitative analysis of high- 
frequency seismic radiation. 
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